Asteroidi: forma e modelli

Giovanni Garofalo • 12 novembre 2024

Nonostante la grande quantità di dati di alta qualità, la maggior parte delle nostre conoscenze sugli asteroidi deriva da osservazioni terrestri. I modelli classici di evoluzione degli asteroidi sono stati utili per comprendere come le popolazioni di asteroidi si sono evolute nel tempo, in particolare per capire la principale fonte di materiale proveniente dalla fascia principale. Tuttavia, i modelli classici non riescono a spiegare alcune caratteristiche fisiche osservate nella popolazione degli asteroidi Near-Earth Objects (NEO). Gli asteroidi che seguono orbite potenzialmente pericolose per la Terra costituiscono un gruppo particolarmente interessante da studiare. Per prevedere l'evoluzione orbitale di questi asteroidi, è necessario investigare le loro proprietà fisiche. Sebbene la fotometria sia il tipo di dato osservativo più abbondante, i modelli degli asteroidi possono essere ottenuti utilizzando vari tipi di dati e tecniche. Le tecniche più interessanti sono, in generali, l’imaging radar e le misurazioni delle occultazioni stellari, che, combinate con la fotometria integrata, permettono di ottenere informazioni sulle proprietà fisiche degli asteroidi. I processi evolutivi che gli asteroidi attraversano sono tradizionalmente spiegati attraverso perturbazioni gravitazionali e collisioni tra corpi celesti. 


L'importanza della modellizzazione degli asteroidi nella valutazione del rischio di impatto

Gli asteroidi rivestono un ruolo importante nei modelli di formazione ed evoluzione del Sistema Solare e sono direttamente legati alla vita sulla Terra, in quanto potrebbero aver contribuito alla consegna di acqua e materiali organici al nostro pianeta. Alcuni, però, sono anche considerati potenzialmente pericolosi per il nostro futuro.

La comunicazione dei media riguardo la scoperta di nuovi asteroidi pericolosi è frequente, ma spesso sensazionalista, poiché tali asteroidi non rappresentano un rischio immediato di impatto. La valutazione del pericolo deriva dalla previsione dell’evoluzione dell'orbita dell'asteroide e dal calcolo della probabilità di un impatto, generalmente inferiore a una su mille.


Per ottenere previsioni precise, sono necessarie misurazioni astrometriche. La comprensione di queste proprietà (come rotazione e forma) è fondamentale, in quanto influiscono sull’evoluzione dell’orbita, in particolare a lungo termine, quando effetti non gravitazionali come l'effetto Yarkovsky diventano determinanti.  Esso è causato dalla radiazione solare assorbita dalla superficie di un asteroide, che poi viene riemessa sotto forma di energia termica. Questa emissione termica non è uniforme, perché dipende dall'orientamento dell'asteroide rispetto al Sole e dalla sua rotazione. Di conseguenza, l’irraggiamento produce una piccola forza che agisce sull'asteroide, modificando lentamente la sua orbita. È diviso in due componenti principali: perturbazione diurna, la quale dipende dalla rotazione dell'asteroide, e la perturbazione stagionale, la quale dipende dalla sua orbita e dall'orientamento dell'asse di rotazione rispetto al Sole. Questo effetto è particolarmente importante per asteroidi di piccole dimensioni, dove la spinta termica è più significativa. Questo effetto dipende da fattori come la distanza dall'asteroide al Sole, la forma, la rotazione e le proprietà della sua superficie.


Un altro effetto non gravitazionale, chiamato YORP, è in grado di modificare la velocità di rotazione e l'orientamento degli assi di rotazione degli asteroidi. La forza di rinculo causata dalla radiazione emessa produce una coppia termica che, se il corpo non è perfettamente simmetrico, causa una rotazione. L'effetto YORP dipende fortemente dalla forma dell'asteroide, quindi per calcolarlo è necessario un modello dettagliato della distribuzione della temperatura superficiale dell'asteroide. Per includere questi effetti non gravitazionali nei calcoli orbitali, è essenziale conoscere in dettaglio le proprietà fisiche dell'asteroide. La tecnica più comune per determinare la dimensione di un asteroide è il radar, mentre le proprietà termiche della superficie possono essere derivate da osservazioni infrarosse. Per modellare l'effetto Yarkovsky, è fondamentale conoscere lo stato di rotazione e l'orientamento dell'asse di rotazione dell'asteroide. La fotometria relativa è la principale fonte per ottenere modelli di asteroidi, ma per calcolare l'effetto YORP è necessario un modello di forma ad alta risoluzione. In questo senso, i modelli ottenuti tramite misurazioni dirette da sonde spaziali sono ideali e limitati a pochi asteroidi che sono stati visitati da sonde. Le osservazioni radar possono essere utili per ottenere modelli di forma complessi, ma bisogna fare attenzione a non trarre conclusioni errate.


Modelli basati sulla fotometria

Per modellare le forze non gravitazionali che agiscono sugli asteroidi, è necessario determinare il loro stato di rotazione e la forma. A tal fine, la fotometria è la tecnica di osservazione più efficace. Le osservazioni fotometriche classiche degli asteroidi (chiamate "curve di luce dense") raccolte negli ultimi decenni rappresentano la principale fonte di conoscenza sui parametri fisici degli asteroidi. Tuttavia, raccogliere un numero sufficiente di dati fotometrici per ottenere un modello è un compito complesso che richiede una pianificazione accurata e spesso una collaborazione tra diversi osservatori. Quando i dati raccolti soddisfano i requisiti necessari, è possibile applicare una tecnica di inversione per ottenere un modello dell'asteroide. Tale modello include lo stato di rotazione dell'asteroide e una stima della sua forma. A seconda dei dati disponibili, possono essere utilizzate diverse rappresentazioni della forma (ad esempio, ellissoidi, figure convesse o non convesse). 


Shape Models

Le variazioni della luminosità apparente di un asteroide dipendono principalmente dalla sua distanza dal Sole e dall’osservatore, nonché dall’angolo tra questi due punti di vista (detto angolo di fase). Tuttavia, un asteroide di forma non sferica mostra anche variazioni cicliche più brevi dovute alla sua rotazione. Le caratteristiche della curva di luce, come ampiezza e periodo, dipendono dallo stato di rotazione e dalla forma dell’asteroide. Ad esempio, un corpo allungato visto di lato produrrà una curva di luce con ampiezza elevata, mentre un oggetto quasi sferico presenterà un’ampiezza bassa. Se osservato dal polo, invece, la curva sarà quasi piatta. Per riprodurre queste variazioni, si utilizza un metodo che modella la forma reale dell’asteroide, approssimabile con un ellissoide a tre assi. Questo modello semplificato consente di spiegare variazioni di luminosità associate a rotazione e geometria di osservazione. Tuttavia, asteroidi con forme più complesse generano curve di luce più articolate, e per rappresentarli meglio si usano modelli di forma convessa, come il metodo SAGE.


Negli ultimi anni, sono stati sviluppati algoritmi per integrare dati provenienti da diverse fonti (curve di luce, occultazioni stellari, immagini radar), come KOALA e ADAM, che migliorano la precisione dei modelli. Tuttavia, la qualità dei modelli dipende dalla disponibilità di dati fotometrici densi e di qualità. Missioni come Gaia forniranno enormi quantità di dati fotometrici per circa 300.000 asteroidi, permettendo di costruire modelli per almeno 10.000 oggetti. Gaia, con limitate osservazioni per asteroide, adotterà un modello di ellissoide triassiale per minimizzare il carico computazionale, un metodo semplice ma efficace anche con dati di forme non convesse. Questi modelli forniranno informazioni preziose per lo studio della formazione del Sistema Solare, pur essendo soggetti a limitazioni che richiedono ulteriori studi da Terra per completare le informazioni mancanti.


Modelli binari di asteroidi

Un caso particolarmente interessante per gli astronomi sono gli asteroidi con satelliti al seguito, poiché consentono di calcolare direttamente la massa dei componenti grazie alla terza legge di Keplero. Questi sistemi binari sono quindi cruciali per lo studio della struttura interna e della composizione degli asteroidi.

I sistemi binari sincroni sono stati studiati e modellati ampiamente. Recentemente, è stato sviluppato un algoritmo in grado di creare modelli di asteroidi binari utilizzando una rappresentazione non convessa delle forme dei componenti, migliorando l’accuratezza del volume e della densità. Attualmente si conoscono più di 100 asteroidi binari nella fascia principale e circa trecento in totale, includendo anche gli asteroidi prossimi alla Terra (NEO) e i trans nettuniani (TNO).


Si prevede che il numero di asteroidi con satelliti aumenterà notevolmente grazie ai dati di missioni come Gaia, richiedendo lo sviluppo di strategie automatiche per individuare candidati binari in grandi dataset. Si ipotizza che la popolazione di NEO possa contenere molti sistemi binari o multipli, probabilmente a causa della frammentazione di asteroidi. Le tecniche di inversione, capaci di derivare modelli di asteroidi binari, possono quindi contribuire a una comprensione più profonda dei loro processi di formazione e degli effetti non gravitazionali che influenzano questi sistemi.


Conclusione

In conclusione, questo articolo divulgativo ha esplorato la complessità delle osservazioni astrometriche e fotometriche degli asteroidi, evidenziando l'importanza di modelli accurati per comprendere la loro forma, rotazione, struttura interna e composizione. Grazie a metodologie avanzate, come i modelli di inversione e gli algoritmi di ricostruzione non convessa, oggi possiamo ottenere rappresentazioni dettagliate che riflettono fedelmente le caratteristiche fisiche degli asteroidi, inclusi i sistemi binari e multipli.

Con l'avvento di missioni di osservazione su larga scala, come Gaia, e di nuovi approcci di automazione nell’analisi dei dati, si aprono prospettive straordinarie per aumentare significativamente la quantità e la qualità delle informazioni disponibili su decine di migliaia di oggetti nel Sistema Solare. Questi progressi tecnologici e metodologici non solo migliorano la nostra capacità di modellazione, ma contribuiscono anche alla comprensione più approfondita delle dinamiche e dei processi evolutivi, come quelli causati da effetti non gravitazionali.



Condividi

Mentre la stagione più calda e soggetta agli incendi boschivi volge al termine,
Autore: Gabriele Dessena 9 settembre 2025
Mentre la stagione più calda e soggetta agli incendi boschivi volge al termine, è interessante osservare come l’Italia affronti questa emergenza dall’alto, affidandosi a una flotta specializzata di velivoli ed elicotteri
A settembre la ISS verrà raggiunta da due missioni cargo di rifornimenti
Autore: AstroBenny (Benedetta Facini) 2 settembre 2025
A settembre la Stazione Spaziale Internazionale verrà raggiunta da due missioni cargo di rifornimento. La prima missione chiamata Progress MS-32 verrà lanciata da Roscosmos, l’agenzia spaziale russa, mentre la seconda missione chiamata CRS NG-23 , verrà gestita da Northrop Grumman. Progress MS-32 Il lancio della missione Progress MS-32 avverrà con un razzo Soyuz di Roscosmos dal cosmodromo di Baikonur in Kazakistan.
Autore: Elisa Goffo 28 agosto 2025
Un gruppo di ricercatori potrebbe aver individuato per la prima volta un buco nero supermassiccio subito dopo la sua formazione. Il buco nero si trova al centro di una struttura chiamata “ Infinity ”, nata dalla fusione di due galassie . La scoperta potrebbe offrire un nuovo spunto per comprendere come i buchi neri massicci si siano originati nell'universo primordiale.
Fin dagli albori dell’attività spaziale, i detriti derivanti da satelliti, razzi e altri oggetti in
Autore: Giovanni Garofalo 26 agosto 2025
Fin dagli albori dell’attività spaziale, i detriti derivanti da satelliti, razzi e altri oggetti in orbita hanno rappresentato un rischio potenziale durante il loro rientro nell’atmosfera terrestre.
Autore: Lucia Pigliaru 21 agosto 2025
Le prime spettacolari immagini del satellite Proba-3 sono state rilasciate il 16 giugno 2025 in occasione del salone internazionale dell’Aeronautica e dello Spazio di Les Bouget. Le immagini mostrano l’atmosfera esterna del Sole, la corona solare.
Autore: Liliana Balotti 12 agosto 2025
FLEX, acronimo di FLuorescence EXplorer , è la missione innovativa dell’Agenzia Spaziale Europea (ESA) dedicata alla misurazione della fluorescenza delle piante , un indicatore diretto della loro attività di fotosintesi. Previsto nel quarto trimestre del 2026 con un lancio su Vega‑C dal Centro Spaziale della Guyana Francese, questo satellite opererà su un’orbita quasi polare a circa 814 km di altitudine, lavorando in tandem con un satellite Sentinel‑3 nel quadro del programma Living Planet / Earth Explorer. Durante la fotosintesi, le piante emettono una debole luce fluorescente — invisibile a occhio nudo — che rappresenta un indicatore affidabile della loro efficienza energetica e salute complessiva . FLEX misurerà questa fluorescenza, chiamata SIF (Solar-Induced chlorophyll Fluorescence), con una risoluzione spaziale di circa 300 m e cicli di osservazione ripetuti ogni 27 giorni.
Autore: AstroBenny (Benedetta Facini) 8 agosto 2025
L’azienda aerospaziale Sierra Space ha annunciato che il debutto operativo del Dream Chaser è previsto entro la fine del 2025 . Il Dream Chaser è il primo spazioplano sviluppato per uso commerciale e verrà lanciato a bordo di un razzo Vulcan Centaur della United Launch Alliance (ULA) dal Kennedy Space Center in Florida. La missione sarà denominata CRS-1 e prevede il trasporto di circa 5000 kg di carico verso la ISS.
Autore: Simone Semeraro 7 agosto 2025
La Stazione Spaziale Internazionale (ISS) ci ha donato informazioni preziosissime sulla biologia e la fisica al di fuori dell’atmosfera ed in condizioni di microgravità, e continuerà a sorprenderci per almeno un altro lustro. Ma la ISS, caposaldo anche simboli di cooperazione internazionale, non è la prima stazione orbitale artificiale . Dalla corsa allo spazio, dopo l’arrivo sulla Luna, un passaggio fondamentale è stato sviluppare le conoscenze e le tecnologie che avrebbero facilitato l’accesso alle future missioni spaziali.
Autore: AstroBenny (Benedetta Facini) 5 agosto 2025
Arianespace ha annunciato che il 13 agosto (alle 2:37 italiane) è previsto il lancio del satellite Metop-SGA1 di EUMETSAT. Il lancio sarà effettuato da Arianespace utilizzando il nuovo vettore Ariane 6 che decollerà dallo Spazioporto Europeo a Kourou, nella Guyana Francese, in Sud America.
Venere, il secondo pianeta del nostro sistema solare, è spesso definito il
Autore: Andrea Vanoni 29 luglio 2025
Venere, il secondo pianeta del nostro sistema solare, è spesso definito il " pianeta gemello " della Terra per le sue dimensioni simili e la composizione rocciosa. Tuttavia, le sue condizioni sono estremamente diverse: è avvolto da dense nubi di acido solforico e ha temperature superficiali che raggiungono i 465 gradi Celsius , rendendolo un ambiente ostile per qualsiasi forma di vita conosciuta.
Show More