Prevenire la generazione di space debris

Giovanni Garofalo • 4 giugno 2025
L'Agenzia Spaziale Europea (ESA) ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l'obiettivo di Zero Debris entro il 2030. Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024)
 Modello CAD di asteroide

Il documento identifica sei obiettivi tecnologici chiave, tra cui: prevenire il rilascio di nuovi detriti, migliorare la sorveglianza del traffico spaziale e approfondire la conoscenza degli effetti dei detriti spaziali. Questo sforzo collettivo rappresenta un passo significativo verso un futuro sostenibile nello spazio, promuovendo una collaborazione internazionale per la salvaguardia dell'ambiente orbitale terrestre. In questo articolo ci si focalizzerà principalmente sulla prevenzione del rilascio dei detriti ad opera di collisioni.


Migliorare la valutazione del rischio di collisione

Mantenere la probabilità di generazione di detriti dovuta a collisioni e frammentazioni al di sotto di “1 su 1000” per oggetto richiede una combinazione di minimizzazione del rischio non indifferente. L’aumento del numero di detriti e il rischio associato alle collisioni in orbita comportano una necessità crescente per gli operatori, i quali devono evitare a tutti i costi le collisioni, pena il fallimento della missione. Durante la fase di progettazione, il calcolo della probabilità cumulativa di collisione sull'intera vita orbitale di un veicolo spaziale o di un satellite può essere utilizzato per selezionare percorsi orbitali più sicuri. Le soluzioni per soddisfare questa esigenza includono:

  • Una metodologia standardizzata per la valutazione della probabilità di collisione durante la fase di progettazione, che prevede la formalizzazione delle condizioni di input per l'analisi, come i modelli di popolazione degli oggetti spaziali, le proprietà e caratteristiche del veicolo spaziale, nonché il modo in cui vengono gestite le incertezze.
Space Debirs risk assesment

Fattori chiave:

1.      Definizione di linee guida e metodologie per la valutazione della probabilità cumulativa di collisione, adattate alle varie fasi della missione e alle popolazione di detriti;

2.      Creazione di algoritmi di apprendimento automatico per prevedere con maggiore precisione le probabilità di collisione, sfruttando dati storici di collisioni, modelli di comportamento dei veicoli spaziali e indicatori di manutenzione predittiva

Una modellazione accurata degli eventi di frammentazione è necessaria per prevedere e ridurre in modo preciso i rischi di collisione.

·        Metodologia per la valutazione delle conseguenze delle collisioni e modellazione della frammentazione.

Fattori chiave:

1.      Sviluppo di modelli di frammentazione e di test sperimentali per valutazione impatto;

2.      Attuazione dei test su larga scala per l’impiego di attrezzature più grandi;

3.      Studi di affidabilità in campo balistico.



Valutazione standardizzata dei rischi impliciti riscontrati

Le attuali linee guida per la mitigazione dei detriti si basano comunemente su approssimazioni (es. limiti di vita operativa), anziché che concentrarsi sul rischio effettivo di generazione di detriti. Per affrontare questo problema, è necessario sviluppare metodologie in grado di quantificare direttamente il rischio di generazione di detriti. 

Space Debris Distribution

Le soluzioni per soddisfare questa esigenza includono:

·        Sviluppo di metodi standardizzati e riconosciuti a livello internazionale per la valutazione della probabilità e della gravità degli eventi di generazione di detriti, al fine di consentire una valutazione del rischio coerente e affidabile tra le diverse missioni spaziali.

Fattori chiave:

1.      Definizione di un indice dei detriti spaziali;

2.      Metriche condivise per valutare l’impatto della generazione di detriti durante una missione, includendo tutti gli elementi utili;

3.      Metodi di valutazione del rischio differenziati in base alle caratteristiche orbitali e alla popolazione di detriti considerata;

4.      Sviluppo di modelli previsionali del traffico spaziale futuro. 

 

Evitare le collisioni in fase di progettazione e/o rientro

Con l’aumento della congestione orbitale, l’evitamento delle collisioni diventa sempre più complesso per gli operatori. Per affrontare questa sfida, è necessario migliorare sia le capacità di manovra che i sistemi autonomi per evitare le collisioni sin dalle prime fasi di progettazione della missione.

Orbital Debris Programme

Le soluzioni per soddisfare questa esigenza includono:

·        Il miglioramento della capacità dei veicoli spaziali di eseguire manovre evasive per evitare collisioni;


·        Sviluppo di sistemi autonomi affidabili per la rilevazione di collisioni,  al fine di migliorare significativamente i tempi di risposta e ridurre la dipendenza da interventi manuali.

Fattori chiave:

1.      Sviluppo di sistemi affidabili per operazioni autonome integrate di rilevamento delle collisioni, con sistemi di coordinamento tra i sottosistemi;

2.      Riduzione dei tempi decisionali in caso di fallimento del sistema automatico. 

 

 

Minimizzare i rischi legati agli oggetti non tracciabili attraverso la progettazione 

Tutti gli attori del settore spaziale devono ridurre il rischio che i detriti non tracciabili rappresentano per gli oggetti spaziali, per garantire una bassa probabilità di generare ulteriori detriti.

rimozione di detriti

Le soluzioni per affrontare questa problematica includono:

·        Sviluppo di modelli statistici per l’evoluzione e il comportamento dei detriti non tracciabili e per l’evoluzione a lungo termine del sistema preso in considerazione.

Fattori chiave:

1.      Sviluppo di sensori spaziali per il rilevamento e utilizzo di dati elaborati;

2.      Misurazioni regolari della densità dei detriti e aggiornamento dei modelli di popolazione di riferimento.

·        Soluzioni di mitigazione progettuale, anche tramite il miglioramento del design e della protezione dei veicoli spaziali, contro le Particelle Piccole che non possono essere rilevate o evitate in tempo

Fattori chiave:

1.      Sviluppo di tecnologie e analisi topologica per una corretta schermatura e protezione delle apparecchiature critiche (es. batterie, serbatoi in pressione);

2.      Sistemi di monitoraggio dello stato di salute per valutare i danni post-impatto e prevedere la vita operativa residua.



Minimizzazione dei i rischi di frammentazioni interne

L’automazione riduce i rischi derivanti da una incorretta analisi da parte di un operatore umano. Ciò porta ad una corretta identificazione delle possibilità di frammentazione interna dovuta ad una collisione con un corpo estraneo. Sebbene i sistemi autonomi riducano la probabilità di una collisione, essi introducono anche nuovi rischi, quale l’eventuale attivazione prematura di un componente o il fallimento a catena dell’intero segmento elettro-meccanico.

Le soluzioni per affrontare questa problematica includono:

·        Modellizzazione migliorata e affidabile delle frammentazioni interne, incluse quelle causate da eventi imprevisti.

Fattori chiave:

1.      Metodologie e strumenti standardizzati per valutare i guasti negli elementi e sottosistemi dei veicoli spaziali che potrebbero portare a frammentazione;

2.      Sviluppo/miglioramento di test e database per caratterizzare gli effetti degli impatti sulle strutture.

·        Adozione di tecnologie per un’automazione affidabile

Fattori chiave:

1.      Architetture robuste (es. monitoraggio dello stato di salute);

 

·        Sviluppo di tecnologie di contenimento per le fonti di energia immagazzinata a bordo

Fattori chiave:

1.      Sviluppo di tecnologie di contenimento (es. batterie, serbatoi in pressione);

2.      Definizione di linee guida per la progettazione di recipienti in pressione adeguati per prevenire la generazione di detriti.

Space Debris capture

Conclusioni               

La crescente congestione dello spazio e il numero in aumento di oggetti in orbita rendono sempre più urgente l’adozione di strategie efficaci per la mitigazione dei detriti spaziali. Per garantire la sostenibilità dello spazio, è essenziale migliorare la valutazione e la gestione del rischio di detriti attraverso: metodologie standardizzate, tecnologie avanzate, intelligenza artificiale e progettazione resiliente. Servono strumenti efficaci per prevenire collisioni, frammentazioni interne e impatti con oggetti non tracciabili, insieme a modelli accurati e sistemi di passivazione affidabili. Il successo dipende dal coordinamento internazionale, dalla standardizzazione tecnica e da un impegno condiviso tra tutti gli attori del settore spaziale.

Condividi

Autore: Andrea Vanoni 9 ottobre 2025
Un tempo riservata agli osservatori professionali e alle agenzie spaziali, l’osservazione e la ripresa di corpi celesti come la Luna, i pianeti e persino il Sole è oggi alla portata di molti grazie ai progressi della tecnologia e alla crescente accessibilità di strumenti astronomici amatoriali. Sempre più appassionati di astronomia si cimentano nella fotografia planetaria e solare, ottenendo risultati sorprendenti e contribuendo, talvolta, anche alla ricerca scientifica. Negli ultimi anni, il mercato ha visto un’impennata nella qualità e nella disponibilità di telescopi, camere planetarie, filtri solari e software di elaborazione immagini pensati per gli astrofili. Strumenti come: • Telescopi a lunga focale , ideali per l’osservazione planetaria • Camere CMOS ad alta sensibilità e frame rate elevato • Software di stacking e post-processing (come AutoStakkert!, RegiStax e AstroSurface) hanno rivoluzionato le possibilità di chi osserva il cielo da casa, permettendo di ottenere dettagli sorprendenti di Giove, Saturno, Marte, delle fasi lunari e persino delle macchie solari.
Autore: Liliana Balotti 2 ottobre 2025
La NASA ha ufficialmente annunciato la selezione di 10 nuovi astronauti per la classe del 2025 , scelti tra oltre 8.000 candidati provenienti da tutti gli Stati Uniti. Dopo un lungo e rigoroso processo di valutazione che ha incluso test fisici, psicologici, tecnici e colloqui altamente selettivi, sono emersi sei donne e quattro uomini che rappresentano l'élite scientifica, tecnica e operativa del Paese. Il nuovo gruppo inizierà ora un intenso programma di addestramento di due anni presso il Johnson Space Center di Houston , sede storica del corpo astronauti. Durante questo periodo, saranno formati su una vasta gamma di competenze: camminate spaziali (EVA), operazioni robotiche, ingegneria di sistemi spaziali, lingua russa (necessaria per lavorare con i colleghi a bordo della ISS), sopravvivenza in ambienti ostili e operazioni mediche d’emergenza. Solo al termine di questo addestramento otterranno la qualifica ufficiale di astronauta. La classe del 2025 potrà essere assegnata a diverse missioni, tra cui spedizioni a bordo della Stazione Spaziale Internazionale (ISS) , missioni commerciali con partner privati come SpaceX e Axiom , o, per alcuni di loro, ruoli chiave nelle prossime fasi del programma Artemis , che punta a riportare l’uomo — e per la prima volta una donna — sulla superficie lunare nel corso di questo decennio. Obiettivo finale: creare una presenza umana sostenibile sulla Luna e, successivamente, pianificare le prime missioni con equipaggio verso Marte . Con questa nuova selezione, il numero totale di astronauti scelti dalla NASA dalla nascita del corpo astronauti — risalente al 1959 con il primo gruppo delle missioni Mercury — sale a 370 persone . Si tratta di un traguardo simbolico, che riflette non solo la continuità della grande tradizione spaziale americana, ma anche la sua trasformazione: dagli anni pionieristici della corsa allo spazio, passando per le missioni Apollo, lo Space Shuttle e la ISS, fino all’attuale era di collaborazione tra agenzie spaziali e aziende private. La classe 2025 si distingue per la sua notevole diversità professionale . Tra i nuovi astronauti figurano piloti militari collaudatori , ingegneri aerospaziali , medici , scienziati planetari , esperti di missioni spaziali commerciali e persino una ex atleta della nazionale statunitense di rugby. Alcuni hanno già avuto un assaggio dello spazio, come Anna Menon , che ha volato nel 2024 nella missione privata Polaris Dawn , mentre altri hanno alle spalle centinaia di ore di volo in teatri operativi o hanno partecipato a missioni scientifiche in ambienti estremi sulla Terra, come l’Antartide o zone vulcaniche. Il loro background riflette il nuovo volto dell’esplorazione spaziale americana: multidisciplinare, collaborativo, altamente tecnico e sempre più orientato verso l’esplorazione umana del Sistema Solare . Questi dieci astronauti non saranno solo esploratori: saranno scienziati, ingegneri, comunicatori, ambasciatori della Terra nello spazio. Con l’ambizione di riportare esseri umani sulla Luna dopo oltre 50 anni, e con la prospettiva di spingersi oltre, la NASA sta costruendo oggi la squadra che domani potrebbe rappresentare l’umanità su altri mondi.
Autore: AstroBenny (Benedetta Facini) 30 settembre 2025
Sierra Space ha annunciato che il volo inaugurale del suo spazioplano Dream Chaser non includerà più una manovra di attracco con la Stazione Spaziale Internazionale (ISS), ma sarà limitato a una missione dimostrativa in orbita. Il cambiamento deriva da una revisione del contratto Commercial Resupply Services-2 (CRS-2) che in origine prevedeva un minimo di sette missioni di rifornimento all’ISS con Dream Chaser e il modulo cargo Shooting Star.
Autore: Simone Semeraro 25 settembre 2025
Da quando Sputnik raggiunse l’orbita terrestre, lo spazio si è via via riempito di satelliti. Non tutti hanno il privilegio di ritornare sulla Terra. Molti di essi, o meglio, molte parti di essi, sono destinati a vagare nello spazio per decenni. Questi oggetti di modeste dimensioni sono come dei proiettili, pronti a danneggiare qualunque oggetto si trovi sulle loro traiettorie. Due eventi storici hanno aumentato in maniera significativa il numero dei detriti spaziali : il test missilistico cinese del 2007 e lo scontro tra Iridium 33 e Kosmos 2251.
Autore: AstroBenny (Bendetta Facini) 16 settembre 2025
L’agenzia spaziale russa Roscosmos ha annunciato l’equipaggio e la data di lancio della missione Soyuz MS-28. La missione, della durata di circa otto mesi, è prevista per il 27 novembre e raggiungerà la Stazione Spaziale Internazionale dove verrà effettuato uno scambio di equipaggio con la missione precedente. Il lancio avverrà dal Cosmodromo di Baikonur in Kazakistan a bordo di una navicella Soyuz. L’equipaggio
Mentre la stagione più calda e soggetta agli incendi boschivi volge al termine,
Autore: Gabriele Dessena 9 settembre 2025
Mentre la stagione più calda e soggetta agli incendi boschivi volge al termine, è interessante osservare come l’Italia affronti questa emergenza dall’alto, affidandosi a una flotta specializzata di velivoli ed elicotteri
A settembre la ISS verrà raggiunta da due missioni cargo di rifornimenti
Autore: AstroBenny (Benedetta Facini) 2 settembre 2025
A settembre la Stazione Spaziale Internazionale verrà raggiunta da due missioni cargo di rifornimento. La prima missione chiamata Progress MS-32 verrà lanciata da Roscosmos, l’agenzia spaziale russa, mentre la seconda missione chiamata CRS NG-23 , verrà gestita da Northrop Grumman. Progress MS-32 Il lancio della missione Progress MS-32 avverrà con un razzo Soyuz di Roscosmos dal cosmodromo di Baikonur in Kazakistan.
Autore: Elisa Goffo 28 agosto 2025
Un gruppo di ricercatori potrebbe aver individuato per la prima volta un buco nero supermassiccio subito dopo la sua formazione. Il buco nero si trova al centro di una struttura chiamata “ Infinity ”, nata dalla fusione di due galassie . La scoperta potrebbe offrire un nuovo spunto per comprendere come i buchi neri massicci si siano originati nell'universo primordiale.
Fin dagli albori dell’attività spaziale, i detriti derivanti da satelliti, razzi e altri oggetti in
Autore: Giovanni Garofalo 26 agosto 2025
Fin dagli albori dell’attività spaziale, i detriti derivanti da satelliti, razzi e altri oggetti in orbita hanno rappresentato un rischio potenziale durante il loro rientro nell’atmosfera terrestre.
Autore: Lucia Pigliaru 21 agosto 2025
Le prime spettacolari immagini del satellite Proba-3 sono state rilasciate il 16 giugno 2025 in occasione del salone internazionale dell’Aeronautica e dello Spazio di Les Bouget. Le immagini mostrano l’atmosfera esterna del Sole, la corona solare.
Show More