Detriti spaziali? rimozione tempestiva!

Giovanni Garofalo • 18 aprile 2025

L'Agenzia Spaziale Europea (ESA) ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l'obiettivo di Zero Debris entro il 2030. Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024)

orbita asteroide detriti spaziali

Il documento identifica sei obiettivi tecnologici chiave, tra cui: prevenire il rilascio di nuovi detriti, migliorare la sorveglianza del traffico spaziale e approfondire la conoscenza degli effetti dei detriti spaziali. Questo sforzo collettivo rappresenta un passo significativo verso un futuro sostenibile nello spazio, promuovendo una collaborazione internazionale per la salvaguardia dell'ambiente orbitale terrestre. In questo articolo ci si focalizzerà principalmente sul rilascio dei detriti ad opera delle operazioni spaziali.


Garantire una rimozione tempestiva di detriti spaziali

Tutti gli attori coinvolti nel settore spaziale devono garantire che gli oggetti spaziali vengano smaltiti con successo e tempestivamente per ridurre al minimo il rischio di generazione di detriti e di disturbi alle missioni operative. Gli sforzi necessari, al 2025, stanno diventando sempre più grandi a causa dei costi preventivi per sviluppare soluzioni tecniche e operative in grado di migliorare la probabilità di “de-orbiting” degli oggetti spaziali al termine delle missioni.


de-orbiting detriti spaziali space debris CleanSat

Raggiungere una rimozione orbitale tempestiva  e di successo dopo la fine della missione è fondamentale per evitare l’accumulo di detriti. Per raggiungere un tasso di successo di almeno il 99%  nella rimozione orbitale, è necessario:

  1. Aumentare la probabilità che un oggetto “de-orbiti” autonomamente al termine della missione: Si tratta di sviluppare tecnologie che permettano agli oggetti spaziali di rientrare nell’atmosfera o di essere guidati verso di essa, riducendo così il rischio di collisioni con altri corpi di più importante natura;
  2. Progettare architetture spaziali più affidabili, poiché le missioni future devono poter essere libere di procedere nel loro moto senza che un qualsivoglia tipo di impatto metta a rischio la missione;
  3. Affiancare queste capacità con mezzi esterni di rimozione quando gli oggetti spaziali non rientrano in atmosfera autonomamente;
  4. Assicurarsi che gli oggetti spaziali siano pronti per la rimozione, poiché la preparazione post-missione è essenziale. Ciò include la progettazione di componenti che possano essere facilmente catturati o manovrati dai sistemi di rimozione.


Migliorare la rimozione orbitale

Al momento, esistono architetture che consentono a un oggetto di rientrare in atmosfera autonomamente al termine della missione, e.g., sistemi per veicoli spaziali in orbita terrestre bassa, ma è necessario renderle più accessibili economicamente e più affidabili per raggiungere alti tassi di successo nelle operazioni di rimozione per una diffusione su larga scala.

Inoltre, potrebbero essere esplorate soluzioni alternative per diverse regioni orbitali e casi d'uso. Le soluzioni per affrontare questa problematica includono lo sviluppo e adozione di sistemi sicuri e affidabili.


Tra i fattori chiave, è possibile nominare:

  1. Soluzioni di smaltimento economiche, in particolare per i piccoli satelliti. Ciò include tecnologie come i sistemi di propulsione, le vele solari, paracadute atmosferici, sottosistemi di smaltimento "plug and play". Approcci simili ridurrebbero i costi anche per missioni di breve durata;
  2. Architetture che aumentano la probabilità di un rientro in atmosfera o in maniera autonoma, tenendo conto di possibili estensioni della missione, guasti o fattori esterni. Inoltre, l'inserimento di dispositivi di backup e la progettazione secondo ampi margini di sicurezza possono consentire al veicolo di affrontare situazioni e imprevisti;
  3. Il miglioramento della comprensione delle pratiche operative, includendo la condivisione delle informazioni tra le agenzie spaziali, l'adozione di procedure operative standardizzate, la gestione del rientro sicuro di un corpo in atmosfera. L'efficienza operativa in queste situazioni è fondamentale per ridurre i rischi di fallimento nelle missioni di smaltimento dei detriti spaziali.


ESA detriti spaziali space debris deorbiting

Allo stesso modo, sono necessari lo sviluppo, la validazione e l’adozione di sistemi avanzati di monitoraggio della salute dei veicoli spaziali. Metodi di verifica efficaci e, possibilmente, efficienti, sono essenziali per garantire la rimozione tempestiva e sicura dei detriti spaziali, evitando che di mettere a rischio le missioni attive in orbita. Ciò riguarda principalmente:

1.    Tecnologie avanzate per il monitoraggio in-situ: Sensori vibro-acustici, fibre ottiche integrate nei materiali compositi (CFRP), accelerometri, sensori di temperatura e radiazione, misurazione precisa del propellente.

2.    Rilevamento delle anomalie e previsione dei guasti: Tecniche basate sull’IA, modelli digital twin, miglioramento dell’interazione tra operatori e sviluppatori.

3.    Monitoraggio sistematico dei dati di volo: Analisi di guasti, anomalie, degrado delle prestazioni e gestione delle risorse per aggiornare le probabilità di successo nello smaltimento dei satelliti.


Inoltre, sono necessari metodi di verifica per una rimozione tempestiva ed efficace:

1.    Metodologia standard per il calcolo della durata orbitale residua, considerando coefficiente di resistenza, modelli atmosferici e solari, e parametri specifici;

2.    Metodologia standard per valutare la probabilità di smaltimento, includendo il rischio di impatti con detriti o altri oggetti, con aggiornamenti periodici fino al termine della vita operativa.


remove detriti spaziali space debris airbus

Preparazione (degli oggetti spaziali) per la rimozione

Quando un oggetto spaziale non riesce a “de-orbitare” autonomamente, è necessario ricorrere a mezzi esterni per la sua rimozione. Ciò richiede interfacce e strumenti specifici per agevolare operazioni di cattura e rimozione, adattabili a diversi tipi e dimensioni e a diverse strategie di smaltimento. Tra i fattori abilitanti per questa preparazione, la standardizzazione delle interfacce di rimozione e delle attività è essenziale.


rimozione detriti spaziali space debris

Dimostrazioni di fattibilità

Anche con sistemi di smaltimento affidabili, alcuni satelliti potrebbero non riuscire a de-orbitare autonomamente. Per questo, è fondamentale dimostrare l’efficacia dei servizi di rimozione esterni. Tra le attività principali, è fondamentale dimostrare in loco lo stato dei satelliti in una situazione reale e l’integrità strutturale per stimare rischi e fattibilità di rimozione. Tra le tecnologie dimostrabili, è possibile annoverare:

  • Le tecnologie di caratterizzazione basate su ispezioni in-situ e campagne di osservazione secondo dati telemetrici;
  • L’analisi dell’integrità strutturale in live-view, con modellazione predittiva dell’invecchiamento e osservazioni dedicate.


Conclusioni

Sono necessari ulteriori sforzi per sviluppare soluzioni tecniche e operative volte a migliorare la probabilità di successo nel “deorbitare” gli oggetti spaziali al termine della loro missione. Raggiungere una rapida e efficace rimozione orbitale dopo la fine della missione è fondamentale per evitare l’accumulo di detriti. Per ottenere un tasso di successo della rimozione orbitale di almeno il 99%, sono necessari miglioramenti a vari livelli, tra cui, ma non solo:

·      Aumentare la probabilità che un oggetto rientri autonomamente in atmosfera terrestre dopo la fine della missione;

·      Progettare architetture di veicoli spaziali più affidabili;

·      Integrare queste capacità con mezzi esterni, come i servizi di rimozione, quando necessario (Figura 4, 5);

·      Garantire che gli oggetti spaziali siano predisposti per la rimozione.


rimozione detriti spaziali space debris

L'attuale modello delle operazioni spaziali sta cambiando grazie ad aziende estremamente capitalizzate, quali per esempio SpaceX e BlueOrigin. Prima, esso si basava sull'uso singolo dei veicoli spaziali, progettati per essere lanciati, operare e poi essere eliminati nell'atmosfera o posizionati in orbite morte. Per un futuro più sostenibile, è necessario passare a un modello di economia circolare nello spazio, che mira a ridurre l'uso delle risorse e aumentare il valore derivato dagli asset spaziali.

Condividi

Autore: Elisa Goffo 28 ottobre 2025
I pianeti che conosciamo nella nostra galassia sono più di 6000, ma sappiamo ancora molto poco su come si formino. Il modo migliore per studiare i loro processi di formazione è osservare i sistemi planetari “appena nati”. Il sistema planetario PDS 70 , situato a circa 370 anni luce da noi , è il miglior esempio che abbiamo scoperto finora ed anche il più studiato. é infatti il primo sistema conosciuto in cui gli astronomi hanno potuto assistere direttamente alla nascita di pianeti extrasolari. PDS 70 è una stella giovane, di circa 5 milioni di anni, che si trova ancora nella sua “infanzia”, se confrontata con i 4,6 miliardi di anni del nostro Sole. Per questo, e per molti altri motivi, è uno dei luoghi più studiati del cielo, dove possiamo osservare direttamente pianeti in formazione.
Autore: Andrea Vanoni 9 ottobre 2025
Un tempo riservata agli osservatori professionali e alle agenzie spaziali, l’osservazione e la ripresa di corpi celesti come la Luna, i pianeti e persino il Sole è oggi alla portata di molti grazie ai progressi della tecnologia e alla crescente accessibilità di strumenti astronomici amatoriali. Sempre più appassionati di astronomia si cimentano nella fotografia planetaria e solare, ottenendo risultati sorprendenti e contribuendo, talvolta, anche alla ricerca scientifica. Negli ultimi anni, il mercato ha visto un’impennata nella qualità e nella disponibilità di telescopi, camere planetarie, filtri solari e software di elaborazione immagini pensati per gli astrofili. Strumenti come: • Telescopi a lunga focale , ideali per l’osservazione planetaria • Camere CMOS ad alta sensibilità e frame rate elevato • Software di stacking e post-processing (come AutoStakkert!, RegiStax e AstroSurface) hanno rivoluzionato le possibilità di chi osserva il cielo da casa, permettendo di ottenere dettagli sorprendenti di Giove, Saturno, Marte, delle fasi lunari e persino delle macchie solari.
Autore: Liliana Balotti 2 ottobre 2025
La NASA ha ufficialmente annunciato la selezione di 10 nuovi astronauti per la classe del 2025 , scelti tra oltre 8.000 candidati provenienti da tutti gli Stati Uniti. Dopo un lungo e rigoroso processo di valutazione che ha incluso test fisici, psicologici, tecnici e colloqui altamente selettivi, sono emersi sei donne e quattro uomini che rappresentano l'élite scientifica, tecnica e operativa del Paese. Il nuovo gruppo inizierà ora un intenso programma di addestramento di due anni presso il Johnson Space Center di Houston , sede storica del corpo astronauti. Durante questo periodo, saranno formati su una vasta gamma di competenze: camminate spaziali (EVA), operazioni robotiche, ingegneria di sistemi spaziali, lingua russa (necessaria per lavorare con i colleghi a bordo della ISS), sopravvivenza in ambienti ostili e operazioni mediche d’emergenza. Solo al termine di questo addestramento otterranno la qualifica ufficiale di astronauta. La classe del 2025 potrà essere assegnata a diverse missioni, tra cui spedizioni a bordo della Stazione Spaziale Internazionale (ISS) , missioni commerciali con partner privati come SpaceX e Axiom , o, per alcuni di loro, ruoli chiave nelle prossime fasi del programma Artemis , che punta a riportare l’uomo — e per la prima volta una donna — sulla superficie lunare nel corso di questo decennio. Obiettivo finale: creare una presenza umana sostenibile sulla Luna e, successivamente, pianificare le prime missioni con equipaggio verso Marte . Con questa nuova selezione, il numero totale di astronauti scelti dalla NASA dalla nascita del corpo astronauti — risalente al 1959 con il primo gruppo delle missioni Mercury — sale a 370 persone . Si tratta di un traguardo simbolico, che riflette non solo la continuità della grande tradizione spaziale americana, ma anche la sua trasformazione: dagli anni pionieristici della corsa allo spazio, passando per le missioni Apollo, lo Space Shuttle e la ISS, fino all’attuale era di collaborazione tra agenzie spaziali e aziende private. La classe 2025 si distingue per la sua notevole diversità professionale . Tra i nuovi astronauti figurano piloti militari collaudatori , ingegneri aerospaziali , medici , scienziati planetari , esperti di missioni spaziali commerciali e persino una ex atleta della nazionale statunitense di rugby. Alcuni hanno già avuto un assaggio dello spazio, come Anna Menon , che ha volato nel 2024 nella missione privata Polaris Dawn , mentre altri hanno alle spalle centinaia di ore di volo in teatri operativi o hanno partecipato a missioni scientifiche in ambienti estremi sulla Terra, come l’Antartide o zone vulcaniche. Il loro background riflette il nuovo volto dell’esplorazione spaziale americana: multidisciplinare, collaborativo, altamente tecnico e sempre più orientato verso l’esplorazione umana del Sistema Solare . Questi dieci astronauti non saranno solo esploratori: saranno scienziati, ingegneri, comunicatori, ambasciatori della Terra nello spazio. Con l’ambizione di riportare esseri umani sulla Luna dopo oltre 50 anni, e con la prospettiva di spingersi oltre, la NASA sta costruendo oggi la squadra che domani potrebbe rappresentare l’umanità su altri mondi.
Autore: AstroBenny (Benedetta Facini) 30 settembre 2025
Sierra Space ha annunciato che il volo inaugurale del suo spazioplano Dream Chaser non includerà più una manovra di attracco con la Stazione Spaziale Internazionale (ISS), ma sarà limitato a una missione dimostrativa in orbita. Il cambiamento deriva da una revisione del contratto Commercial Resupply Services-2 (CRS-2) che in origine prevedeva un minimo di sette missioni di rifornimento all’ISS con Dream Chaser e il modulo cargo Shooting Star.
Autore: Simone Semeraro 25 settembre 2025
Da quando Sputnik raggiunse l’orbita terrestre, lo spazio si è via via riempito di satelliti. Non tutti hanno il privilegio di ritornare sulla Terra. Molti di essi, o meglio, molte parti di essi, sono destinati a vagare nello spazio per decenni. Questi oggetti di modeste dimensioni sono come dei proiettili, pronti a danneggiare qualunque oggetto si trovi sulle loro traiettorie. Due eventi storici hanno aumentato in maniera significativa il numero dei detriti spaziali : il test missilistico cinese del 2007 e lo scontro tra Iridium 33 e Kosmos 2251.
Autore: AstroBenny (Bendetta Facini) 16 settembre 2025
L’agenzia spaziale russa Roscosmos ha annunciato l’equipaggio e la data di lancio della missione Soyuz MS-28. La missione, della durata di circa otto mesi, è prevista per il 27 novembre e raggiungerà la Stazione Spaziale Internazionale dove verrà effettuato uno scambio di equipaggio con la missione precedente. Il lancio avverrà dal Cosmodromo di Baikonur in Kazakistan a bordo di una navicella Soyuz. L’equipaggio
Mentre la stagione più calda e soggetta agli incendi boschivi volge al termine,
Autore: Gabriele Dessena 9 settembre 2025
Mentre la stagione più calda e soggetta agli incendi boschivi volge al termine, è interessante osservare come l’Italia affronti questa emergenza dall’alto, affidandosi a una flotta specializzata di velivoli ed elicotteri
A settembre la ISS verrà raggiunta da due missioni cargo di rifornimenti
Autore: AstroBenny (Benedetta Facini) 2 settembre 2025
A settembre la Stazione Spaziale Internazionale verrà raggiunta da due missioni cargo di rifornimento. La prima missione chiamata Progress MS-32 verrà lanciata da Roscosmos, l’agenzia spaziale russa, mentre la seconda missione chiamata CRS NG-23 , verrà gestita da Northrop Grumman. Progress MS-32 Il lancio della missione Progress MS-32 avverrà con un razzo Soyuz di Roscosmos dal cosmodromo di Baikonur in Kazakistan.
Autore: Elisa Goffo 28 agosto 2025
Un gruppo di ricercatori potrebbe aver individuato per la prima volta un buco nero supermassiccio subito dopo la sua formazione. Il buco nero si trova al centro di una struttura chiamata “ Infinity ”, nata dalla fusione di due galassie . La scoperta potrebbe offrire un nuovo spunto per comprendere come i buchi neri massicci si siano originati nell'universo primordiale.
Fin dagli albori dell’attività spaziale, i detriti derivanti da satelliti, razzi e altri oggetti in
Autore: Giovanni Garofalo 26 agosto 2025
Fin dagli albori dell’attività spaziale, i detriti derivanti da satelliti, razzi e altri oggetti in orbita hanno rappresentato un rischio potenziale durante il loro rientro nell’atmosfera terrestre.
Show More