Detriti spaziali? rimozione tempestiva!

Giovanni Garofalo • 18 aprile 2025

L'Agenzia Spaziale Europea (ESA) ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l'obiettivo di Zero Debris entro il 2030. Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024)

orbita asteroide detriti spaziali

Il documento identifica sei obiettivi tecnologici chiave, tra cui: prevenire il rilascio di nuovi detriti, migliorare la sorveglianza del traffico spaziale e approfondire la conoscenza degli effetti dei detriti spaziali. Questo sforzo collettivo rappresenta un passo significativo verso un futuro sostenibile nello spazio, promuovendo una collaborazione internazionale per la salvaguardia dell'ambiente orbitale terrestre. In questo articolo ci si focalizzerà principalmente sul rilascio dei detriti ad opera delle operazioni spaziali.


Garantire una rimozione tempestiva di detriti spaziali

Tutti gli attori coinvolti nel settore spaziale devono garantire che gli oggetti spaziali vengano smaltiti con successo e tempestivamente per ridurre al minimo il rischio di generazione di detriti e di disturbi alle missioni operative. Gli sforzi necessari, al 2025, stanno diventando sempre più grandi a causa dei costi preventivi per sviluppare soluzioni tecniche e operative in grado di migliorare la probabilità di “de-orbiting” degli oggetti spaziali al termine delle missioni.


de-orbiting detriti spaziali space debris CleanSat

Raggiungere una rimozione orbitale tempestiva  e di successo dopo la fine della missione è fondamentale per evitare l’accumulo di detriti. Per raggiungere un tasso di successo di almeno il 99%  nella rimozione orbitale, è necessario:

  1. Aumentare la probabilità che un oggetto “de-orbiti” autonomamente al termine della missione: Si tratta di sviluppare tecnologie che permettano agli oggetti spaziali di rientrare nell’atmosfera o di essere guidati verso di essa, riducendo così il rischio di collisioni con altri corpi di più importante natura;
  2. Progettare architetture spaziali più affidabili, poiché le missioni future devono poter essere libere di procedere nel loro moto senza che un qualsivoglia tipo di impatto metta a rischio la missione;
  3. Affiancare queste capacità con mezzi esterni di rimozione quando gli oggetti spaziali non rientrano in atmosfera autonomamente;
  4. Assicurarsi che gli oggetti spaziali siano pronti per la rimozione, poiché la preparazione post-missione è essenziale. Ciò include la progettazione di componenti che possano essere facilmente catturati o manovrati dai sistemi di rimozione.


Migliorare la rimozione orbitale

Al momento, esistono architetture che consentono a un oggetto di rientrare in atmosfera autonomamente al termine della missione, e.g., sistemi per veicoli spaziali in orbita terrestre bassa, ma è necessario renderle più accessibili economicamente e più affidabili per raggiungere alti tassi di successo nelle operazioni di rimozione per una diffusione su larga scala.

Inoltre, potrebbero essere esplorate soluzioni alternative per diverse regioni orbitali e casi d'uso. Le soluzioni per affrontare questa problematica includono lo sviluppo e adozione di sistemi sicuri e affidabili.


Tra i fattori chiave, è possibile nominare:

  1. Soluzioni di smaltimento economiche, in particolare per i piccoli satelliti. Ciò include tecnologie come i sistemi di propulsione, le vele solari, paracadute atmosferici, sottosistemi di smaltimento "plug and play". Approcci simili ridurrebbero i costi anche per missioni di breve durata;
  2. Architetture che aumentano la probabilità di un rientro in atmosfera o in maniera autonoma, tenendo conto di possibili estensioni della missione, guasti o fattori esterni. Inoltre, l'inserimento di dispositivi di backup e la progettazione secondo ampi margini di sicurezza possono consentire al veicolo di affrontare situazioni e imprevisti;
  3. Il miglioramento della comprensione delle pratiche operative, includendo la condivisione delle informazioni tra le agenzie spaziali, l'adozione di procedure operative standardizzate, la gestione del rientro sicuro di un corpo in atmosfera. L'efficienza operativa in queste situazioni è fondamentale per ridurre i rischi di fallimento nelle missioni di smaltimento dei detriti spaziali.


ESA detriti spaziali space debris deorbiting

Allo stesso modo, sono necessari lo sviluppo, la validazione e l’adozione di sistemi avanzati di monitoraggio della salute dei veicoli spaziali. Metodi di verifica efficaci e, possibilmente, efficienti, sono essenziali per garantire la rimozione tempestiva e sicura dei detriti spaziali, evitando che di mettere a rischio le missioni attive in orbita. Ciò riguarda principalmente:

1.    Tecnologie avanzate per il monitoraggio in-situ: Sensori vibro-acustici, fibre ottiche integrate nei materiali compositi (CFRP), accelerometri, sensori di temperatura e radiazione, misurazione precisa del propellente.

2.    Rilevamento delle anomalie e previsione dei guasti: Tecniche basate sull’IA, modelli digital twin, miglioramento dell’interazione tra operatori e sviluppatori.

3.    Monitoraggio sistematico dei dati di volo: Analisi di guasti, anomalie, degrado delle prestazioni e gestione delle risorse per aggiornare le probabilità di successo nello smaltimento dei satelliti.


Inoltre, sono necessari metodi di verifica per una rimozione tempestiva ed efficace:

1.    Metodologia standard per il calcolo della durata orbitale residua, considerando coefficiente di resistenza, modelli atmosferici e solari, e parametri specifici;

2.    Metodologia standard per valutare la probabilità di smaltimento, includendo il rischio di impatti con detriti o altri oggetti, con aggiornamenti periodici fino al termine della vita operativa.


remove detriti spaziali space debris airbus

Preparazione (degli oggetti spaziali) per la rimozione

Quando un oggetto spaziale non riesce a “de-orbitare” autonomamente, è necessario ricorrere a mezzi esterni per la sua rimozione. Ciò richiede interfacce e strumenti specifici per agevolare operazioni di cattura e rimozione, adattabili a diversi tipi e dimensioni e a diverse strategie di smaltimento. Tra i fattori abilitanti per questa preparazione, la standardizzazione delle interfacce di rimozione e delle attività è essenziale.


rimozione detriti spaziali space debris

Dimostrazioni di fattibilità

Anche con sistemi di smaltimento affidabili, alcuni satelliti potrebbero non riuscire a de-orbitare autonomamente. Per questo, è fondamentale dimostrare l’efficacia dei servizi di rimozione esterni. Tra le attività principali, è fondamentale dimostrare in loco lo stato dei satelliti in una situazione reale e l’integrità strutturale per stimare rischi e fattibilità di rimozione. Tra le tecnologie dimostrabili, è possibile annoverare:

  • Le tecnologie di caratterizzazione basate su ispezioni in-situ e campagne di osservazione secondo dati telemetrici;
  • L’analisi dell’integrità strutturale in live-view, con modellazione predittiva dell’invecchiamento e osservazioni dedicate.


Conclusioni

Sono necessari ulteriori sforzi per sviluppare soluzioni tecniche e operative volte a migliorare la probabilità di successo nel “deorbitare” gli oggetti spaziali al termine della loro missione. Raggiungere una rapida e efficace rimozione orbitale dopo la fine della missione è fondamentale per evitare l’accumulo di detriti. Per ottenere un tasso di successo della rimozione orbitale di almeno il 99%, sono necessari miglioramenti a vari livelli, tra cui, ma non solo:

·      Aumentare la probabilità che un oggetto rientri autonomamente in atmosfera terrestre dopo la fine della missione;

·      Progettare architetture di veicoli spaziali più affidabili;

·      Integrare queste capacità con mezzi esterni, come i servizi di rimozione, quando necessario (Figura 4, 5);

·      Garantire che gli oggetti spaziali siano predisposti per la rimozione.


rimozione detriti spaziali space debris

L'attuale modello delle operazioni spaziali sta cambiando grazie ad aziende estremamente capitalizzate, quali per esempio SpaceX e BlueOrigin. Prima, esso si basava sull'uso singolo dei veicoli spaziali, progettati per essere lanciati, operare e poi essere eliminati nell'atmosfera o posizionati in orbite morte. Per un futuro più sostenibile, è necessario passare a un modello di economia circolare nello spazio, che mira a ridurre l'uso delle risorse e aumentare il valore derivato dagli asset spaziali.

Condividi

Verità sulle scie chimiche: la scienza ci aiuta a distinguere la realtà dal mito
Autore: Gabriele Dessena 12 giugno 2025
Negli ultimi anni, si sono moltiplicate le voci su presunti complotti legati alle scie lasciate dagli aerei in alta quota . Molti chiamano queste tracce scie chimiche (chemtrails in inglese), ipotizzando che contengano sostanze misteriose o pericolose disperse intenzionalmente. In realtà, dietro a queste linee bianche che solcano il cielo si cela una spiegazione molto più semplice e, soprattutto, scientificamente fondata .
Con l’aumento della congestione orbitale, l’evitamento delle collisioni diventa sempre più complesso
Autore: Giovanni Garofalo 4 giugno 2025
L'Agenzia Spaziale Europea (ESA) ha pubblicato il "Zero Debris Technical Booklet" il 15 gennaio 2025, un documento fondamentale che delinea le tecnologie necessarie per raggiungere l'obiettivo di Zero Debris entro il 2030. Questo è il risultato di una collaborazione tra ingegneri, operatori, giuristi, scienziati ed esperti di politica, tutti membri della comunità Zero Debris, composta dai firmatari della Zero Debris Charter. (European Space Agency, 2024)
Sfide e record delle sonde di esplorazione spaziali Voyager1 e Voyager 2
Autore: Simone Semeraro 28 maggio 2025
Nessun altro oggetto artificiale ha mai raggiunto la distanza che la sonda Voyager 1 ha percorso dal suo lancio. Quasi 25 miliardi di chilometri percorsi in 48 anni di viaggio . Ad oggi, Voyager 1 e la sua gemella, Voyager 2, sono gli unici costrutti terrestri ad aver oltrepassato l’eliosfera, rispettivamente nel 2012 e nel 2018. Ripercorriamo insieme i momenti salienti ed il fine ultimo della missione Voyager.
Autore: AstroBenny (Benedetta Facini) 20 maggio 2025
SpaceX ha annunciato di aver ottenuto i permessi dalla FAA per effettuare un altro test del sistema razzo-navicella Starship Super Heavy (Starship è la navicella-secondo stadio e il booster è chiamato Super Heavy) Il lancio è previsto per il 26 maggio 2025 alle 1:30 (ora italiana) dallo spazioporto Starbase a Boca Chica, Texas.
Un affascinante viaggio dell'universo in espansione, attraverso scoperte e misteri da risolvere.
Autore: Elisa Goffo 15 maggio 2025
Da 13,8 miliardi di anni, da quando è nato, l'universo è in continua espansione. Questa espansione non è semplicemente un allontanamento delle galassie l'una dall'altra, ma uno stiramento dello spaziotempo stesso, il tessuto quadridimensionale che costituisce il nostro universo.
Nascita dell’Agenzia Spaziale Africana: AfSA
Autore: Liliana Balotti 13 maggio 2025
La nascita dell’Agenzia Spaziale Africana (AfSA) rappresenta un momento storico: non è solo un passo simbolico verso l’esplorazione spaziale. Questo progetto nasce non solo per partecipare alla corsa spaziale globale, ma per utilizzare la tecnologia spaziale al servizio dello sviluppo sostenibile e dell’integrazione africana , è una risposta concreta alle sfide del continente, che cerca nello spazio soluzioni per l’ambiente, l’agricoltura, l’educazione e la gestione delle risorse naturali. Negli ultimi decenni, diversi Paesi africani hanno avviato programmi spaziali propri: la Nigeria con l’agenzia National Space Research and Development Agency (NASDRA), ha costruito e lanciato satelliti per l’osservazione della Terra. Il Sudafrica è diventato un punto di riferimento nella radioastronomia. L’Egitto ha realizzato i suoi primi satelliti scientifici e nel nel 1998 ha lanciato il primo satellite africano. Da allora, 18 paesi africani hanno lanciato altri 63 satelliti e molte nazioni africane hanno implementato i propri programmi spaziali a beneficio della propria popolazione. E l’’Algeria con l’Agence Spatiale Algerienne (ASAL).
La fasi del ciclo solare: dal minimo solare al declino
Autore: Andrea Vanoni 8 maggio 2025
I cicli solari sono un fenomeno naturale che descrive le variazioni dell’attività del Sole nel tempo, influenzando non solo il nostro sistema solare, ma anche il clima terrestre e le tecnologie che utilizziamo quotidianamente. I cicli solari sono periodi di attività solare caratterizzati da variazioni nel numero di macchie solari e nelle emissioni di radiazione . Questi cicli seguono un andamento che si ripete approssimativamente ogni 11 anni, anche se la durata può variare. Sono prodotti da dinamiche interne al Sole, in particolare dai movimenti del plasma e dai campi magnetici. Le fasi del ciclo solare Un ciclo solare passa attraverso diverse fasi: 1. Minimo Solare : Durante questa fase, il numero di macchie solari è ridotto. L' attività solare è al suo livello più basso e si possono osservare meno esplosioni di energia e di radiazione.
Minimum Equipment List (MEL) e la Configuration Deviation List (CDL) per volare sicuri
Autore: Gabriele Dessena 8 maggio 2025
Nell'immaginario collettivo, un aereo pronto al decollo deve essere perfettamente integro e funzionante in ogni sua parte. Tuttavia, la realtà operativa dell'aviazione civile è più flessibile, grazie a strumenti normativi come la Minimum Equipment List (MEL) e la Configuration Deviation List (CDL) . Questi documenti permettono, in determinate condizioni, di operare voli anche quando alcuni componenti non sono funzionanti o risultano mancanti, garantendo comunque la sicurezza del volo.
Coppia di sonde verso Marte per la NASA con la missione chiamata ESCAPADE
Autore: AstroBenny (Benedetta Facini) 7 maggio 2025
La NASA si prepara a inviare una coppia di sonde verso Marte con una missione chiamata ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers). L’obiettivo è di studiare come l’ atmosfera del Pianeta Rosso sia stata progressivamente dispersa nello spazio, fornendo indizi cruciali sulla trasformazione di Marte da mondo potenzialmente abitabile a pianeta arido. La missione ESCAPADE utilizzerà due sonde identiche sviluppate da Rocket Lab , soprannominate Blue e Gold , che orbiteranno attorno a Marte in formazione; raccoglieranno dati in simultanea ma da diversi punti della magnetosfera marziana.
Rubrica Edu-STEM:  Gamification e STEM - imparare giocando
Autore: Daniela Giannoccaro 5 maggio 2025
Negli ultimi anni, la gamification — l'applicazione di meccaniche di gioco in contesti non ludici, come l'istruzione — sta guadagnando sempre più terreno nel mondo della didattica, in particolare nell'insegnamento delle discipline STEM (Scienza, Tecnologia, Ingegneria e Matematica). In un'epoca in cui l'attenzione degli studenti è spesso frammentata e la competizione con le distrazioni digitali è serrata, introdurre dinamiche di gioco nei percorsi educativi rappresenta una strategia efficace per coinvolgere, motivare e far apprendere in modo più profondo.  Quando il gioco diventa un motore per la curiosità scientifica Elementi come sfide, livelli da superare, premi virtuali, classifiche e badge non sono semplici decorazioni, ma strumenti potenti per rendere l'apprendimento più attivo e partecipativo. La matematica, la scienza, la programmazione e l’ingegneria, materie che spesso risultano astratte o complesse, diventano più accessibili e stimolanti quando proposte sotto forma di gioco. Questo approccio consente agli studenti di apprendere in modo naturale e intuitivo, attraverso l'esperienza diretta, la sperimentazione e il problem solving .
Show More